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Abstract. The notion of distinguishability between quantum states has shown to be fundamental in the
frame of quantum information theory. In this paper we present a new distinguishability criterium by using a
information theoretic quantity: the Jensen-Shannon divergence (JSD). This quantity has several interesting
properties, both from a conceptual and a formal point of view. Previous to define this distinguishability
criterium, we review some of the most frequently used distances defined over quantum mechanics’ Hilbert
space. In this point our main claim is that the JSD can be taken as a unifying distance between quantum
states.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 03.65.-w Quantum mechanics –
89.70.+c Information theory and communication theory

1 Introduction

The problem of measurement is an issue of central impor-
tance in quantum theory, that, since the pioneering days
of the twenties has given rise to controversies [1]. Many of
the most astonishing results of quantum mechanics are re-
lated to the particular properties of the measurement pro-
cesses. In recent years, the unique character of quantum
measurement has led to a new field of research: quantum
information technology [2]. From a formal point of view,
a measurement in quantum theory is described by means
of an Hermitian operator. If the eigenstates of this oper-
ator are |φk〉 and the state of the system to be measured
is |Ψ〉 =

∑
ck|φk〉, then, according to the axioms of the

quantum theory, the result of the measurement will, with
probability |ck|2, be the corresponding eigenvalue ak, rep-
resented physically by an appropriate state of the measur-
ing device A.

A close related theme is that of the distinguisha-
bility between states, that is, just how can we discern
between two states |Ψ (1)〉 and |Ψ (2)〉 of a given physi-
cal system by using the measuring device A. In a semi-
nal paper, Wootters investigated this problem and intro-
duced a “distinguishability-distance” between pure states
in the associated Hilbert space [4]. Braunstein and Caves
extended this distance to density operators for mixed
states [5]. Wootters distinguishability-criterium can be es-
tablished, within the framework of probability theory (in-

a e-mail: lamberti@fis.uncor.edu

dependently of any quantum interpretation), in the fol-
lowing way [4]: two probability distributions, say, p(1) =
(p1, p2, . . . , pN ) and p(2) = (q1, q2, . . . , qN ) are distin-
guishable after L trials (L → ∞) if and only if the
condition

√
L

2

{
N∑

i=1

(δpi)2

pi

}1/2

> 1 (1)

with δpi = pi − qi, is satisfied. This distinguishability-
criterium involves a distance defined over the space of
probability distributions

ds
(
p(1), p(2)

)
=

1
2

√
∑

i

(δpi)2

pi
. (2)

Statisticians call to the square of this form the χ2

distance. Wootters maps this distance into the associ-
ated Hilbert space and establishes a correspondence with
the usual notion of distance between states in Hilbert’s
space.

In addition to its relevance with regards to the distin-
guishability issue, the concept of distance between differ-
ent states in a Hilbert space plays an important role in a
diversity of circumstances

• the study of the geometric properties of the quantum
evolution sub-manifold [6,7],
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• in discussing squeezed coherent states or generalized
coherent spin states [8],

• in ascertaining the quality of approximate treat-
ments [9].

It has recently been recognized that the concept of dis-
tinguishability is basic to manipulate information in the
sense that being able to discern between different phys-
ical states of a given system allows one to determi-
nate just how much information can be encoded into
that system, so that the notion of distinguishability
builds a bridge between quantum theory and information
theory [3].

In this work, we will try to strengthen this connection
by investigating the relation between Wootters’ distance
and a suitable metric for the probability-distributions’
space that is used in information theory: the Jensen-
Shannon divergence (JSD). Recently, the JSD has been
exhaustively studied in different contexts [10]. It has many
interesting interpretations, both in the framework of infor-
mation theory as in the context of mathematical statis-
tics. One of its basic properties is that its square root is a
true metric in the probability-distributions’ space, i.e., its
square root is a distance that verifies the triangle inequal-
ity [11]. This fact is quite relevant, since metric properties
are crucial for the application of many important conver-
gence theorems that one needs when iterative algorithms
are studied.

The purpose of this paper is twofold:

1. first, we pursue a pedagogical objective by reviewing
some distances and metrics commonly used in quan-
tum theory. Even though many of the results presented
here are known, they are not always presented from an
unified perspective, at least in physics literature,

2. second, we formulate a distinguishability criterium for
quantum mechanics based on the JSD.

Finally, some conclusions are drawn.

2 A primer on Hilbert space distances

Let |φ1〉, ...|φN 〉 be the eigenstates of a given Hermitian
operator associated with the measuring instrument A. For
simplicity’s sake we assume that no degeneration exists.
Thus, in a given measurement N possible results may
ensue. If we have prepared the system in the (normal-
ized) state |Ψ (1)〉, each of these results can be found with
probability |〈φi|Ψ (1)〉|2. If we prepare it, instead, in the
state |Ψ (2)〉, this probability is |〈φi|Ψ (2)〉|2. Since the ba-
sis |φi〉 is complete

∑

i

|φi〉〈φi| = I, (3)

one has
∑

i

|〈φi|Ψ (1)〉|2 =
∑

i

|〈φi|Ψ (2)〉|2 = 1. (4)

Let us write

p
(1)
i = |〈φi|Ψ (1)〉|2, p

(2)
i = |〈φi|Ψ (2)〉|2. (5)

An alternative way of looking at things is as follows. Let

X+
N =

{

(p1, . . . , pN); 0 ≤ pi ≤ 1;
∑

i

pi = 1

}

(6)

be the set of discrete probability distributions (generaliza-
tion to continuous ones being straightforward) and let S
be the set of normalized states in the Hilbert space Hn+1,
n+ 1 = N . To each state |Ψ〉 in S (indeed to a ray λ|Ψ〉,
λ = eiϕ) we assign an element {pi} of X+

N through the
application FA given by:

FA : S ⊂ Hn+1 → X+
N

|Ψ〉 → {pi} such that pi = |〈φi|Ψ〉|2. (7)

Obviously, the application FA is consistent with expres-
sions (4) and (5).

Let sX(p(1), p(2)) be a distance defined on the space
of probability distributions X+

N , that is, an application
from X+

N × X+
N into � such that is symmetric and

sX(p(1), p(2)) = 0 if and only if p(1) = p(2). One can
associate to sX(p(1), p(2)) a distance in the space Hn+1,
sAH(|Ψ (1)〉, |Ψ (2)〉) through the application FA. Let us note
that this distance depends upon the measuring instru-
ment A. Our objective is to find a representative dis-
tance of sX(p(1), p(2)) in Hilbert’s space independently
of the basis |φk〉. This will be attained by looking for
the maximum of the associated distance sAH. We dis-
cuss some examples below. The pertinent distances are
given proper names (e.g., Wootters), according to common
usage.

Notation remark. We will use the following notation:
sX denotes a distance defined over X+

N ; sAH denotes the
corresponding distance over Hn+1 obtained from the cor-
respondence induced by application FA; SH denotes the
maximum of sAH.

2.1 Wootters distance

The Wootters distance between two probability distribu-
tions, p(1) and p(2) is defined as

sW
X

(
p(1), p(2)

)
= arccos

(
∑

i

√

p
(1)
i p

(2)
i

)

. (8)

When p(1) → p(2), the form (2) is re-obtained.
By using the correspondence (7), we can write

sW,A
H

(
|Ψ (1)〉, |Ψ (2)〉

)
=

arccos

(
∑

i

|〈φi|Ψ (1)〉||〈φi|Ψ (2)〉|
)

. (9)
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Note that arccos(x) decreases in [0, 1]. Also, the following
inequality

∑

i

∣
∣
∣〈φi|Ψ (1)〉

∣
∣
∣
∣
∣
∣〈φi|Ψ (2)〉

∣
∣
∣ ≥

∣
∣
∣〈Ψ (1)|Ψ (2)〉

∣
∣
∣ , (10)

is true for all {|φi〉}. Indeed, assume |Ψ (1)〉 =
∑

k ak|φk〉,
and |Ψ (2)〉 =

∑
k bk|φk〉. Then,

∣
∣
∣〈Ψ (1)|Ψ (2)〉

∣
∣
∣ =

∣
∣
∣
∣
∣

∑

k

akb
∗
k

∣
∣
∣
∣
∣
≤

∑

k

|akb
∗
k|

≤
∑

k

∣
∣
∣〈φk|Ψ (1)〉

∣
∣
∣
∣
∣
∣〈φk|Ψ (2)〉

∣
∣
∣ . (11)

Inequality (11), together with the arccos−function de-
creasing nature, imply that the distance

SW
H

(
|Ψ (1)〉, |Ψ (2)〉

)
= arccos

(
|〈Ψ (1)|Ψ (2)〉|

)
, (12)

maximizes sW,A
H . In this way we arrive at the distance as-

sociated to the Wootters’ one in Hilbert’s space. Geometri-
cally, it gives the angle between the two states (rays) |Ψ (1)〉
and |Ψ (2)〉.

2.2 Hellinger’ distance

Let sH
X be a distance in X+

N such that its square reads

(sH
X)2

(
p(1), p(2)

)
=

1
2

∑

i

∣
∣
∣
∣

√

p
(1)
i −

√

p
(2)
i

∣
∣
∣
∣

2

. (13)

Its Hn+1−counterpart sH,A
H satisfies

(sH,A
H )2 =

1
2

∑

i

{∣
∣
∣〈φi|Ψ (1)〉

∣
∣
∣ −

∣
∣
∣〈φi|Ψ (2)〉

∣
∣
∣
}2

, (14)

that can be cast as

1 −
∑

i

∣
∣
∣〈φi|Ψ (1)〉|〈φi|Ψ (2)〉

∣
∣
∣ . (15)

We see that, according to the inequality (10), the distance

(SH
H )2

(
|Ψ (1)〉, |Ψ (2)〉

)
= 1 −

∣
∣
∣〈Ψ (1)|Ψ (2)〉

∣
∣
∣ , (16)

is the maximum of the associated distance sH
X . It is known

as Hellinger-distance and it represents the sine of the
half angle between the two Hilbert space vectors |Ψ (1)〉
and |Ψ (2)〉 [12].

2.3 Bhattacharyya’ distance

Another distinguishability measure arises from
Bhattacharyya coefficients. For two probability dis-
tributions p(1) and p(2), the Bhattacharyya coefficients
are defined by [13]

B
(
p(1), p(2)

)
=

∑

i

√

p
(1)
i

√

p
(2)
i . (17)

Out of these coefficients we can define a distance between
probability distributions:

sB
X

(
p(1), p(2)

)
= − ln

(
B

(
p(1), p(2)

))
. (18)

Note that the Wootters’ distance can be also expressed in
terms of the coefficients B(p(1), p(2)) as sW

X (p(1), p(2)) =
arccos(B(p(1), p(2))). It is worth mentioning that neither
Wootters’ nor the distance (18) are metrics because they
do not verify the triangle inequality.

The associated distance to (18) in Hilbert’s space is

sB,A
H = − ln

∑

i

∣
∣
∣〈φi|Ψ (1)〉

∣
∣
∣
∣
∣
∣〈φi|Ψ (2)〉

∣
∣
∣ . (19)

Now, since the function − ln(x) decreases with x, on the
basis of (10) we gather that

SB
H

(
|Ψ (1)〉, |Ψ (2)〉

)
= − ln

∣
∣
∣〈Ψ (1)|Ψ (2)〉

∣
∣
∣ , (20)

is the maximum of Bhattacharyya’s distance.
In these examples we focused attention upon the max-

imums. Also, we have been able to cast all these dis-
tances as a function of a Riemannian Hilbert-space met-
ric: an “angle” between rays, the only one that remains
invariant under the action of the time-evolution unitary
operator.

2.4 Fubini-Study’s metric

Let us recall that the Hilbert space Hn+1 is isomorphic to
the n-dimensional complex projective space Pn, that is,
the quotient space

Pn = (Cn+1 − {0})/ ∼ . (21)

with ∼ the equivalence relation given by

|ψ〉 ∼ |φ〉 iff ∃λ εC − 0 such that |ψ〉 = λ |φ〉. (22)

In this example we start with a Hn+1-distance and con-
struct one in X+

N (previously we proceeded in reverse
fashion). In Pn one defines the Fubini-Study metric θFS

according to

cos2
(
θFS

2

)

≡ 〈ψ|η〉〈η|ψ〉
〈ψ|ψ〉〈η|η〉 . (23)

For |ψ〉 ∼ |φ〉, one has θFS = 0. Maximum separation
between two states is attained for θFS = π. Let (i) S ⊂ Pn

be the set of normalized states in Pn while (ii) |ψ〉 and
|ψ〉 + |dψ〉 are two very close states in S. Normalization
implies

2Re(〈ψ|dψ〉) = −〈dψ|dψ〉. (24)

From (23), by putting |η〉 = |ψ〉 + |dψ〉, we can evalu-
ate the Fubini-Study distance between two infinitely close
states:

cos2
(
dθFS

2

)


(

1 − 1
2!

(
dθ2FS

2

)

+ ...

)2

 1 − (dθ2FS)
4

,

(25)
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so that
dθ2FS = 4(〈dψ|dψ〉 − |〈ψ|dψ〉|2). (26)

If |dψ⊥〉 ≡ |dψ〉 − |ψ〉〈ψ|dψ〉 is the orthogonal projection
onto |ψ〉 of |dψ〉, the Fubini-Study metrics acquires the
aspect [5]

dθ2FS = 4〈dψ⊥|dψ⊥〉. (27)

An alternative approach to the Fubini-Study metric can
be found in reference [6].

Assume now the following expansions for |ψ〉 and |η〉 =
|ψ〉 + |dψ〉:

|ψ〉 =
∑

i

√
pi |φi〉, |η〉 =

∑

i

√
pi + dpi |φi〉, (28)

noticing that one might add appropriate phases in both
equations. These phases, however, can be eliminated
by a proper basis-transformation (see Ref. [5]). The
Fubini-Study distance between these states, up to second
order in dpi becomes

dθ2FS(|ψ〉, |η〉) =
1
4

∑

i

dp2
i

pi
(29)

which can be thought as the corresponding Fubini-Study
metric between the distributions {pi} and {pi + dpi} over
the space X+

N .

3 Jensen-Shannon divergence

Information theoretic measures allow one to build up
quantitative entropic divergences between two probabil-
ity distributions. A common entropic measure is the
Kullback-Leibler divergence:

sK
X

(
p(1), p(2)

)
=

∑

i

p
(1)
i ln

p
(1)
i

p
(2)
i

. (30)

This distance, however, is (i) not symmetric, (ii) un-
bounded, and (iii) not always well defined. To over-
come these limitations Rao and Lin introduced a sym-
metrized version of the Kullback-Leibler divergence the
Jensen-Shannon divergence (JSD), which is defined as

sJS
X

(
p(1), p(2)

)
= H

(
p(1) + p(2)

2

)

− 1
2
H(p(1))− 1

2
H(p(2)),

(31)
where H(p) = −∑

i pi ln pi stands for Shannon‘s en-
tropy [14,15].

The minimum of the JSD occurs at p(1) = p(2) and its
maximum is reached when p(1) and p(2) are two distinct
deterministic distributions. In this case sJS

X = ln 2. As
it was mentioned previously, one of the JSD main prop-
erties is that of being the square of a metric. A proof
of this fact can be found in reference [11]. Alternatively,
this can be proved starting from some classical results
of harmonic analysis due to Schoenberg [16,17]. The ba-
sic property of the JSD that makes Schoenberg theorem

applicable is that sJS
X is a definite negative kernel, that

is, for all finite collection of real number (ζi)i≤N and for
all corresponding finite sets (xi)i≤N of points in X+

N , the
implication

N∑

i

ζi = 0 ⇒
∑

i,j

ζiζjs
JS
X (xi, xj) ≤ 0 (32)

is valid [18].
Another consequence of Schoenberg’s theorems is that

the metric space (X+
N ,

√
sJS

X ) can be isometrically mapped
into a subset of a Hilbert space. This result establishes
a connection between information theory and differential
geometry [19], which could have interesting consequences
in the realm of quantum information theory.

Consider once again the states |ψ〉 and |η〉 given by (28)
in order to evaluate the JSD between the concomitant
probability distributions p(1)(|ψ〉), p(2)(|η〉). By doing so
we are evaluating the associated distance in Hilbert’s
space sJS,A

H between the states |ψ〉 and |η〉. Expanding
the pertinent JSD in dpi-terms, one easily ascertains that
the first non-vanishing contributions are the quadratic
ones

dsJS,A
H (|ψ〉, |η〉) =

1
8

∑

i

dp2
i

pi
, (33)

which coincides with (a half of) the Fubini-Study (29)
instance up to this order in dpi. Up to same order a similar
relation exits between the JSD and both the Wootters’ and
the Bhattacharyya’ distances, that is

dsJS,A
H =

1
2

(
dSW,A

H
)2

=
1
2

(
dSB,A

H
)2

, (34)

which can be easily checked by inspection. Incidentally,
it is worth mentioning that, when we have a continuous
probability distribution p(x), the JSD between p(x) and
its shifted version p(x + δ) is related to the Fisher infor-
mation measure I through the expression

sJS
X (p(x), p(x + δ))  δ

2

√
I

2
(35)

with

I[p(x)] =
∫

[dp(x)
dx ]2

p(x)
dx. (36)

Equations (34) have been established up to second order
in dpi. Let us proceed to higher orders. To do this let
us consider a binary system (a generalization to a system
with a greater number of states is straightforward). Let
p(1) = (p, q) and p(2) = (p + dp, q − dp) with p + q = 1
two neighboring probability distributions and evaluate the
pertinent JSD up to order dp4. We get

dsJS
X = −1

8
1

(p− 1)p
dp2 +

1
16

2p− 1
p2(p− 1)2

dp3

− 7
192

3p2 − 3p+ 1
p3(p− 1)3

dp4 + o(dp5). (37)
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Fig. 1. Plots of sJS
X and (sW

X )2/2. See text for details.

In turn, the corresponding Wootters’ distance squared, up
to the same order is

1
2
(dsW

X )2 = −1
8

1
(p− 1)p

dp2 +
1
16

2p− 1
p2(p− 1)2

dp3

− 1
384

44p2 − 44p+ 15
p3(p− 1)3

dp4 + o(dp5). (38)

We detect coincidence between (37) and (38) up to or-
der dp3. The fourth order difference equals 1/192. In other
words, the relation

dsJS
X =

1
2
(dsW

X )2 (39)

can be established up to third order in dp. Figure 1 shows
how sJS

X and (sW
X )2/2 approach one to each other for

p(1) ≈ p(2). We took p(1) = (a, 1 − a) and p(2) = (b, 1 − b)
and evaluated the corresponding distances as a function
of b by fixing a = 0.5.

Going back to Wootters’ distinguishability cri-
terium (1), with equation (39) in mind, we are in a position
to enunciate an alternative criterium: two probability dis-
tributions P (1) and P (2) are distinguishable after L trials
(L→ ∞) if and only if

(
sJS

X (P (1), P (2))
)1/2

>
1√
2L
. (40)

There exist formal arguments in favor of this last state-
ment, namely (i) (sJS

X )1/2 is a true metric for the spaceX+
N

and (ii) this criterium is established in terms of an in-
formation theoretic quantity, the JSD. Obviously inequal-
ity (40) is equivalent to inequality (1) for two distributions
“close” enough.

In the context of Section 2 the following question
emerges: what metric is the representative of sJS

X in

Hilbert’s space Hn+1? Equivalently: what is the maxi-
mum of the metric sJS,A

H ? In this case it is difficult (or
impossible) to obtain an analytical expression for both
metrics, sJS,A

H and its upper bound SJS
H . Anyway, it is

possible to deduce an upper bound for sJS
H . Let us con-

sider a Hilbert space of dimension 2D and let |Ψ (1)〉
and |Ψ (2)〉 be two arbitrary, normalized states (the exten-
sion to a greater number of dimensions is straightforward).
We set |〈Ψ (1)|Ψ (2)〉| = cosϕ for ϕε[0, π/2], that is, ϕ is the
Wootters distance between |Ψ (1)〉 and |Ψ (2)〉.

Let {|φi〉}2
i=1 be an orthonormal basis for H2. Any

other orthonormal basis {|φ̃i〉}2
i=1 can be related to {|φi〉}

via the rotation

|φ̃1(θ)〉 =
eiθ

√
2
|φ1〉 +

e−iθ

√
2
|φ2〉

|φ̃2(θ)〉 = − eiθ

√
2
|φ1〉 +

e−iθ

√
2
|φ2〉 (41)

with θε[0, 2π]. We set p(j)
i ≡ |〈φi|Ψ (j)〉|2 and p̃

(j)
i (θ) ≡

|〈φ̃i(θ)|Ψ (j)〉|2. Also, 〈φi|Ψ (j)〉 =
√

p
(j)
i eiα

(j)
i (via applica-

tion of (7)). A little algebra then leads to

p̃
(1)
1 (θ) =

p
(1)
1 + p

(1)
2

2
+

√

p
(1)
1 p

(1)
2 cos

(
2θ + α

(1)
2 − α

(1)
1

)
,

(42)
and

p̃
(2)
1 (θ) =

p
(2)
1 + p

(2)
2

2
+

√

p
(2)
1 p

(2)
2 cos

(
2θ + α

(2)
1 − α

(2)
2

)

(43)
with α

(j)
i are real numbers. Moreover, p̃(1)

2 = 1 − p̃
(1)
1

and p̃
(2)
2 = 1 − p̃

(2)
1 . Without loss of generality we can

take |φ1〉 = |Ψ (1)〉, so that p(1)
1 = 1, α(1)

1 = 0, p(1)
2 = 0,√

p
(2)
1 = cosϕ and

√

p
(2)
2 = sinϕ. Thus, we can compute

√

2sJS,φ̃
H (p̃(2), p̃(1)) as a function of θ. Figure 2 plots such a

function for different ϕ−values. Figure 3 depicts a 3D-plot

of
√

2sJS,φ̃
H as a function of θ and ϕ. In both cases we put

α
(1)
2 = α

(2)
1 = α

(2)
2 = 0.

Out of these figures we conclude that Wootters’ dis-

tance (ϕ) is an upper bound to
√

2sJS,φ̃
H (p̃(2), p̃(1)). For

ϕ → 0, both quantities tend to coincide. In other words,
we can state the inequalities

SW
H

(
|Ψ (1)〉, |Ψ (2)〉

)
≥ sW,A

H
(
|Ψ (1)〉, |Ψ (2)〉

)

≥
√

2sJS,A
H (|Ψ (1)〉, |Ψ (2)〉) (44)

for any measure device A.
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Fig. 2.

√

2sJS,φ̃
H (p̃(2), p̃(1)) as a function of θ for ϕ = 0.5 and

ϕ = 0.8.

Fig. 3. 3D Plot of

√

2sJS,φ̃
H (p̃(2), p̃(1)) as a function of θ and ϕ.

One clearly appreciates the bound in the plane z = ϕ.

Inequalities (44) allow us to conclude that
SW
H (|Ψ (1)〉, |Ψ (2)〉) “represents” (as the maximum,

that is as the lowest upper bound) to
√

2sJS,A
H in the

Hilbert space. Furthermore two states distinguishable
under the “Jensen-Shannon criterium” are obviously
distinguishable under the Wootters’ ones.

4 Conclusions

We have proposed an alternative distinguishability cri-
terium for quantum states. This distinguishability cri-
terium is established in terms of an information theoretical
quantity: the JSD, that exhibits many interesting proper-
ties, such as a metric character and its boundedness. This
provides for a better formal context. In some sense we feel
that the JSD could be taken as a unified measure of dis-
tinguishability in the framework of quantum information
theory.

In the present work we focused on the case of
pure states. An extension to mixed states can be eas-
ily attained. In fact, by replacing in equation (31) the
Shannon entropy by the von Neumann entropy, HN (ρ) =
−Tr(ρ ln ρ), we can evaluate the JSD between two states
described by the density operators ρ1 and ρ2:

SJS
H (ρ1, ρ2) = HN

(
ρ1 + ρ2

2

)

− 1
2
HN (ρ1) − 1

2
HN (ρ2).

(45)
Remarkably, this quantity is always well defined unlike the
corresponding Kullback-Leibler divergence that requires
that the support of ρ1 is equal to or larger than that
of ρ2 [20]. A more detailed study of the properties of JSD
for mixed states will be presented elsewhere.

Finally it is worth to mention that the JSD can
be also interpreted in a Bayesian probabilistic sense.
In fact, the JSD gives both lower and upper bounds
to Bayes’ probability error. Therefore, it deserves care-
ful scrutiny in the light of some alternative quantum
descriptions [21].
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